
SciDataContainer
Release 1.0.0

Reinhard Caspary, Sven Kleinert

May 31, 2023

CONTENTS

1 Data Container Concept 3
1.1 Container Parameters . 3
1.2 Dataset Description . 4
1.3 Timestamp Format . 4
1.4 Suggested Parts . 4
1.5 Container Variants . 5

2 Configuration 7
2.1 Container File Extension . 7
2.2 Configuration File . 7
2.3 Example Configuration File . 8

3 Python Library 9
3.1 Basic Usage . 9
3.2 Advanced Usage . 12
3.3 SciDataContainer API . 14

4 Data Storage Server 21
4.1 Container Upload . 21
4.2 Container Download . 21

Index 23

i

ii

SciDataContainer, Release 1.0.0

This documentation describes a lean container file format for the storage of scientific data in a way compliant to the
FAIR principles of modern research data management. The standardized data container provides maximum flexibility
and minimal restrictions. It is operating system independent and may be stored as local file as well as uploaded to a
data storage server.

Data containers may be built and accessed using standard operating system tools. However, specialized tools make the
workflow much more convenient. A Python library is already available, others will follow. Furthermore, a native GUI
application for Microsoft Windows is on the way. All source code is available on GitHub.

This is a project of the cluster of Excellence PhoenixD funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy (EXC 2122, Project ID 390833453).

The data storage server is currently only available for PhoenixD members. However, we intend to make the whole
project including the server publicly available. If you are from outside PhoenixD and wish to get early access, you are
welcome. Please contact us.

CONTENTS 1

https://en.wikipedia.org/wiki/FAIR_data
python_library/index.html
https://github.com/reincas/SciDataContainer
https://www.phoenixd.uni-hannover.de
https://www.dfg.de/en/
https://www.dfg.de/en/research_funding/programmes/excellence_strategy/index.html

SciDataContainer, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

DATA CONTAINER CONCEPT

The basic concept of the data container is that it keeps the raw dataset, parameter data and meta data together. Parameter
data is every data which scientists traditionally record in lab books like a description of the test setup, measurement
settings, simulation parameters or evaluation parameters. The intention behind the container concept is to make datasets
self-contained.

Each data container is identified by a UUID. The Container file is a ZIP package file. The data in the container is stored
in Items (files in ZIP package), which are organized in Parts (folders in ZIP package). The standard file extension of
a container file is .zdc.

There are no restrictions regarding data formats inside the container, but items should be stored in the JSON format,
whenever possible. This makes the data readable for humans as well as machines. Furthermore, it allows to inspect,
use and even create data container files with the tools provided by the operating system without any special software.
We call the keys of JSON objects data Attributes.

Only the two items content.json and meta.json are required and must be located in the root part of the container.
The optional root item license.txt may be used to store the text of the license for the dataset.

The data payload of a container consisting of the dataset and the parameter data should be stored in certain parts of the
container. Although there are no restrictions in using parts, you should restrict yourself to a set of suggested parts.

1.1 Container Parameters

The parameters describing the container itself are stored in the required root item content.json, which contains a
single JSON object. The following set of attributes is currently defined for this item:

• uuid: required UUID

• replaces: optional UUID of the predecessor of this dataset

• containerType: required container type object

– name: required container name (camel case format)

– id: optional identifier for standardized containers

– version: required standard version, if id is given

• created: required creation timestamp (see format)

• storageTime: required timestamp of storage or freeze (see format)

• static: required boolean flag (see container variants)

• complete: required boolean flag (see container variants)

• hash: optional hex digest of SHA256 hash, required for static containers

3

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Camel_case

SciDataContainer, Release 1.0.0

• usedSoftware: optional list of software objects

– name: required software name

– version: required software version

– id: optional software identifier (e.g. UUID or URL)

– idType: required type of identifier, if id is given

• modelVersion: required data model version

1.2 Dataset Description

The meta data describing the data payload of the container is stored in the required root item meta.json, which
contains a single JSON object. The following set of attributes is currently defined for this item:

• author: required name of the author

• email: required e-mail address of the author

• organization: optional affiliation of the author

• comment: optional comments on the dataset

• title: required title of the dataset

• keywords: optional list of keywords

• description: optional abstract for the dataset

• timestamp: optional creation timestamp of the dataset (see format)

• doi: optional digital object identifier of the dataset

• license: optional data license name (e.g. “MIT” or “CC-BY”)

1.3 Timestamp Format

An ISO 8601 compatible string in a certain format is expected as value of timestamp attributes in content.json and
meta.json. The required format contains the UTC date and time and the local timezone. For example:

"2023-02-17T15:23:57+0100"

1.4 Suggested Parts

Standardization simplifies data exchange as well as reuse of data. Therefore, it is suggested to store the data payload of
a container in the following part structure:

• /info: informative parameters

• /sim: raw simulation results

• /meas: raw measurement results

• /data: parameters and data required to achieve results in /sim or /meas

• /eval: evaluation results derived from /sim and/or /meas

4 Chapter 1. Data Container Concept

https://en.wikipedia.org/wiki/MIT_License
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/ISO_8601

SciDataContainer, Release 1.0.0

• /log: log files or other unstructured data

1.5 Container Variants

Our data model currently supports three variants of data containers, based on certain use cases. The distinction is
mainly relevant for data storage and therefore of particular interest when you upload the container to a storage server.
The respective variant is selected using the boolean attributes static and complete of the item content.json:

static complete Container variant
true true static container
true false (not allowed)
false true normal completed container
false false incomplete container

The normal container is generated and completed in a single step. This matches the typical workflow of generating
data and saving all of it in one shot. However, if the data acquisition runs over a very long time like days or weeks,
you may want to store also incomplete containers. In that case you can mark the container as containing incomplete
data and update it as needed with increasing attribute storageTime. Each server upload will replace the previous
container. With your final upload you mark the container as being complete.

Static containers are intended to carry static parameters in contrast to measurement or simulation data. An example
would be a detailed description of a measurement setup, which is used for many measurements. Instead of including
the large setup data with each individual measurement dataset, the whole setup may be stored as a single static dataset
and referenced by its UUID as measurement parameter in subsequent containers. Static containers must contain a hash
string. The data storage server refuses the upload of multiple containers with same containerType and hash.

1.5. Container Variants 5

SciDataContainer, Release 1.0.0

6 Chapter 1. Data Container Concept

CHAPTER

TWO

CONFIGURATION

2.1 Container File Extension

On Microsoft Windows you may inspect ZDC files with a double-click in the Windows Explorer. This requires that
you register the extension .zdc in the same way as .zip. Run the following on the command prompt to achieve this
behaviour:

reg copy HKCR\.zip HKCR\.zdc /s /f

2.2 Configuration File

Using a SciDataContainer software library or the GUI application makes the usage of data containers much more
convenient. They can initialize and manage many container attributes automatically. The libraries and the GUI are also
able to take some user specific attributes and parameters either from environment variables or a config file.

Name and location of the configuration file is %USERPROFILE%\scidata.cfg on Microsoft Windows and ~/.
scidata on other operating systems. The file is expected to be a text file. Leading and trailing white space is ignored,
as well as lines starting with #. Parameters are taken from lines in the form <key>=<value>. White space before and
after the equal sign is ignored. The keywords are case-insensitive.

The following parameters are supported:

Environment variable Configuration key Content
DC_AUTHOR author author of the dataset
DC_EMAIL email e-mail address of the author
DC_SERVER server name or address of the data storage server
DC_KEY key key for the storage server API

A value in the configuration file supersedes the content of the respective environment variable.

7

SciDataContainer, Release 1.0.0

2.3 Example Configuration File

author = Jane Doe
email = jane.doe@example.com
server = data.example.com
key = 487cadbdcca5302b5d24f94609dbadda4f5b034d2f863ec22f9caa739b12690b

8 Chapter 2. Configuration

CHAPTER

THREE

PYTHON LIBRARY

This is the Python 3 implementation of SciDataContainer. The implementation is operating system independent.
In order to simplify the generation of meta data, the Container class will try to insert default values for the author
name and e-mail address from the configuration file.

The easiest way to install the latest version of the scidatacontainer package is using PIP:

pip install scidatacontainer

3.1 Basic Usage

3.1.1 Container Objects

As a simple application example, we generate and store a list of random integer numbers. Parameters are quantity
and range of the numbers. At first, we import the Python package random module and the class Container from the
package scidatacontainer:

>>> import random
>>> from scidatacontainer import Container

Then we generate a parameter dictionary and the actual test data:

>>> p = {"quantity": 8, "minValue": 1, "maxValue": 6}
>>> data = [random.randint(p["minValue"], p["maxValue"]) for i in range(p["quantity"])]
>>> data
[2, 5, 1, 3, 1, 4, 4, 4]

If a default author name and e-mail address was made available as explained in the Configuration section, there are just
two additional attributes, which you must provide. One is the type of the container and the other a title of the dataset.
Together with the raw data and the dictionary of parameters, we can now build the dictionary of container items:

>>> items = {
... "content.json": {
... "containerType": {"name": "myRandInt"},
... },
... "meta.json": {
... "title": "My first set of random numbers",
... },
... "sim/dice.json": data,
... "data/parameter.json": p,
... }

9

../configuration.html#scidata
https://pypi.org/project/scidatacontainer/

SciDataContainer, Release 1.0.0

Now we are ready to build the container, store it in a local file and get a short description of its content:

>>> dc = Container(items=items)
>>> dc.write("random.zdc")
>>> print(dc)
Complete Container

type: myRandInt
uuid: 306e2c2d-a9f6-4306-8851-1ee0fceeb852
created: 2023-02-28T10:03:44+0100
storageTime: 2023-02-28T10:03:44+0100
author: Reinhard Caspary

Feel free to check the content of the file random.zdc now by opening it on the operating system level. Be reminded that
the Windows Explorer requires the file extension .zdc to be registered first as in the Configuration section. Recovering
the dataset from the local file as a new container object works straight forward:

>>> dc = Container(file="random.zdc")
>>> dc["sim/dice.json"]
[2, 5, 1, 3, 1, 4, 4, 4]

3.1.2 Server Storage

Container files can be stored on and retrieved from a specific data storage server. If the server name and an API key
was made available as explained in the Configuration section, upload and download of a container is as simple as:

>>> dc.upload()
>>> dc = Container(uuid="306e2c2d-a9f6-4306-8851-1ee0fceeb852")

The server makes sure that UUIDs are unique. Once uploaded, a container can never be modified on a server. The only
exemption are incomplete containers.

In the rare case that a certain container needs to be replaced, the attribute replaces may be used in content.json.
Once uploaded, the server will always deliver the new container, even if the container with the old UUID is requested.
Only the owner of a container is allowed to replace it.

10 Chapter 3. Python Library

../concept.html#variants

SciDataContainer, Release 1.0.0

3.1.3 Timestamps

You may use the function timestamp() to generate a timestamp in the format required by the Container class:

>>> from scidatacontainer import timestamp
>>> timestamp()
2023-03-24T21:50:34+0100

3.1.4 Incomplete Containers

As already mentioned, incomplete containers are a container variant which is intended for long running measurements
or simulations. As long as the attribute complete in content.json has the value False, a container may be uploaded
repeatedly, each time replacing the container with the same UUID on the server:

>>> items["content.json"]["complete"] = False
>>> dc = Container(items=items)
>>> dc.upload()
>>> dc["content.json"]["uuid"]
'306e2c2d-a9f6-4306-8851-1ee0fceeb852'

The server will only accept containers with increasing modification timestamps. Since the resolution of the internal
timestamps is a second, you must wait at least one second before the next upload:

>>> dc = Container(uuid="306e2c2d-a9f6-4306-8851-1ee0fceeb852")
>>> dc["meas/newdata.json"] = newdata
>>> dc.upload()

For the final upload, the container must be marked as being complete. This makes this container immutable:

>>> dc = Container(uuid="306e2c2d-a9f6-4306-8851-1ee0fceeb852")
>>> dc["meas/finaldata.json"] = finaldata
>>> dc["content.json"]["complete"] = True
>>> dc.upload()

3.1.5 Static Containers

A static container is generated by calling the method freeze() of the container object. It is intended for static param-
eters in contrast to measurement or simulation data:

>>> dc = Container(items=items)
>>> dc.freeze()
>>> print(dc)
Static Container

type: myRandInt
uuid: 2a7eb1c5-5fe8-4c92-be1d-2f1207b0d855
hash: bafc6813d92bd23b06b63eed035ba9b33415acc770c9128f47775ab2d55cc152
created: 2023-03-01T21:01:20+0100
storageTime: 2023-03-01T21:01:20+0100
author: Reinhard Caspary

Freezing a container will set the attribute static in content.json to True, which makes this container immutable
and it calculates an SHA256 hash of the container content. When you try to upload a static container and there is

3.1. Basic Usage 11

../concept.html#variants
../concept.html#variants

SciDataContainer, Release 1.0.0

another static container with the same attributes containerType.name and hash, the content of the current container
object is silently replaced by the original one from the server.

3.2 Advanced Usage

3.2.1 Convenience Methods

The Container class provides a couple of convenience methods, which make it behave very similar to a dictionary:

>>> dc = Container(items=items)
>>> dc["content.json"]["uuid"]
'306e2c2d-a9f6-4306-8851-1ee0fceeb852'
>>> dc["log/console.txt"] = "Hello World!"
>>> "log/console.txt" in dc
True
>>> del dc["log/console.txt"]
>>> "log/console.txt" in dc
False

The method keys() returns a list of all full item names including the respective parts, values() a list of all item
objects, and items() a list of all (name, item) tuples as you would expect from a dictionary object.

You may use the method hash() to calculate an SHA256 hash of the container content. The hex digest of this value is
stored in the attribute hash of the item container.json.

Container objects generated from an items dictionary using the parameter items=... are mutable, which means that
you can add, modify and delete items. As soon as you call one of the methods write(), upload(), freeze(), or
hash(), the container becomes immutable. Containers loaded from a local file or a server are immutable as well.

An immutable container will throw an exception if you try to modify its content. However, this feature is not bulletproof.
The Container class is not aware of any internal modifications of item objects.

You can convert an immutable container into a mutable one by calling its method release(). This generates a new
UUID and resets the attributes replaces, created, storageTime, hash and modelVersion.

3.2.2 Server Storage

It is most convenient to store the server name and the API key in the configuration file. However, both values can also
be specified as method parameters:

>>> dc.upload(server="...", key="...")
>>> dc = Container(uuid="306e2c2d-a9f6-4306-8851-1ee0fceeb852", server="...", key="...")

12 Chapter 3. Python Library

../configuration.html#scidata

SciDataContainer, Release 1.0.0

3.2.3 File Formats

The Container class can handle virtually any file format. However, in order to store and read a certain file format, it
needs to know how to convert the respective Python object into a bytes stream and vice versa. File formats are identified
by their file extension. The following file extensions are currently supported by the package scidatacontainer out
of the box:

Extension File format Python object Required packages
.json JSON file (UTF-8 encoding) dictionary or others
.txt Text file (UTF-8 encoding) string
.log Text file (UTF-8 encoding) string
.pgm Text file (UTF-8 encoding) string
.png PNG image file NumPy array cv2, numpy
.npy NumPy array NumPy array numpy
.bin Raw binary data file bytes

Native support for image and NumPy objects is only available when your Python environment contains the packages
cv2 and/or numpy. The container class tries to guess the format of items with unknown extension. However, it is more
reliable to use the function register() to add alternative file extensions to already known file formats. The following
commands will register the extension .py as a text file:

>>> from scidatacontainer import register
>>> register("py", "txt")

If you want to register another Python object, you need to provide a conversion class which can convert this object to
and from a bytes string. This class should be inherited from the class FileBase. The storage of NumPy arrays for
example may be realized by the following code:

1 import io
2 import numpy as np
3 from scidatacontainer import FileBase, register
4

5 class NpyFile(FileBase):
6

7 allow_pickle = False
8

9 def encode(self):
10 with io.BytesIO() as fp:
11 np.save(fp, self.data, allow_pickle=self.allow_pickle)
12 fp.seek(0)
13 data = fp.read()
14 return data
15

16 def decode(self, data):
17 with io.BytesIO() as fp:
18 fp.write(data)
19 fp.seek(0)
20 self.data = np.load(fp, allow_pickle=self.allow_pickle)
21

22 register("npy", NpyFile, np.ndarray)

The third argument of the function register() sets this conversion class as default for NumPy array objects overriding
any previous default class. This argument is optional.

3.2. Advanced Usage 13

https://pypi.org/project/opencv-python/
https://pypi.org/project/numpy/

SciDataContainer, Release 1.0.0

Hash values are usually derived from the bytes string of an encoded object. If you require a different behaviour, you
may also override the method hash() of the class FileBase.

3.3 SciDataContainer API

3.3.1 Container classes

class scidatacontainer.Container(items: Optional[dict] = None, file: Optional[str] = None, uuid:
Optional[str] = None, server: Optional[str] = None, key: Optional[str] =
None, compression: int = 8, compresslevel: int = -1)

Bases: AbstractContainer

Scientific data container.

decode(data: bytes, validate: bool = True, strict: bool = True)
Take ZIP package as binary string. Read items from the package and store them in this object.

Parameters

• data – Bytestring containing the ZIP DataContainer.

• validate – If true, validate the content.

• strict – If true, validate the hash, too.

encode()

Encode container as ZIP package. Return package as binary string.

freeze()

Calculate the hash value of this container and make it static. The container cannot be modified any more
when this method was called once.

hash()

Calculate and save the hash value of this container.

items()

Return this container as a dictionary of item objects (key, value) tuples.

keys()→ List[str]
Return a sorted list of the full paths of all items.

Returns
List of paths of Container items.

Return type
List[str]

release()

Make this container mutable. If it was immutable, this method will create a new UUID and initialize the
attributes replaces, createdstorageTime and modelVersion in the item “content.json”. It will also delete an
existing hash and make it a new container.

upload(data: Optional[bytes] = None, server: Optional[str] = None, key: Optional[str] = None)
Create a ZIP archive of the DataContainer and upload it to a server.

If data is passed to the function, data will be written to the file. Otherwise the byte representation of the
class instance will be written to the file, which is what you typically want.

14 Chapter 3. Python Library

SciDataContainer, Release 1.0.0

Parameters

• data – If given, data to write to the file.

• server – URL of the server.

• key – API Key from the server to identify yourself.

validate_content()

Make sure that the item “content.json” exists and contains all required attributes.

validate_meta()

Make sure that the item “meta.json” exists and contains all required attributes.

values()→ List
Return a list of all item objects.

Returns
List of item objects of the Container.

Return type
List

write(fn: str, data: Optional[bytes] = None)
Write the container to a ZIP package file.

If data is passed to the function, data will be written to the file. Otherwise the byte representation of the
class instance will be written to the file, which is what you typically want.

Parameters

• fn – Filename of export file.

• data – If given, data to write to the file.

class scidatacontainer.AbstractContainer(items: Optional[dict] = None, file: Optional[str] = None, uuid:
Optional[str] = None, server: Optional[str] = None, key:
Optional[str] = None, compression: int = 8, compresslevel: int
= -1)

Bases: ABC

Scientific data container with minimal file support.

The following file types are supported:

• .json <-> dict

• .txt <-> str

• .bin <-> bytes

decode(data: bytes, validate: bool = True, strict: bool = True)
Take ZIP package as binary string. Read items from the package and store them in this object.

Parameters

• data – Bytestring containing the ZIP DataContainer.

• validate – If true, validate the content.

• strict – If true, validate the hash, too.

encode()

Encode container as ZIP package. Return package as binary string.

3.3. SciDataContainer API 15

SciDataContainer, Release 1.0.0

freeze()

Calculate the hash value of this container and make it static. The container cannot be modified any more
when this method was called once.

hash()

Calculate and save the hash value of this container.

items()

Return this container as a dictionary of item objects (key, value) tuples.

keys()→ List[str]
Return a sorted list of the full paths of all items.

Returns
List of paths of Container items.

Return type
List[str]

release()

Make this container mutable. If it was immutable, this method will create a new UUID and initialize the
attributes replaces, createdstorageTime and modelVersion in the item “content.json”. It will also delete an
existing hash and make it a new container.

upload(data: Optional[bytes] = None, server: Optional[str] = None, key: Optional[str] = None)
Create a ZIP archive of the DataContainer and upload it to a server.

If data is passed to the function, data will be written to the file. Otherwise the byte representation of the
class instance will be written to the file, which is what you typically want.

Parameters

• data – If given, data to write to the file.

• server – URL of the server.

• key – API Key from the server to identify yourself.

validate_content()

Make sure that the item “content.json” exists and contains all required attributes.

validate_meta()

Make sure that the item “meta.json” exists and contains all required attributes.

values()→ List
Return a list of all item objects.

Returns
List of item objects of the Container.

Return type
List

write(fn: str, data: Optional[bytes] = None)
Write the container to a ZIP package file.

If data is passed to the function, data will be written to the file. Otherwise the byte representation of the
class instance will be written to the file, which is what you typically want.

Parameters

• fn – Filename of export file.

16 Chapter 3. Python Library

SciDataContainer, Release 1.0.0

• data – If given, data to write to the file.

3.3.2 File type support

scidatacontainer.register(suffix: str, fclass: Type[AbstractFile], pclass: Optional[Type[object]] = None)
Register a suffix to a conversion class.

If the parameter class is a string, it is interpreted as known suffix and the conversion class of this suffix is registered
also for the new one.

Parameters

• suffix – file suffix to identify this file type.

• fclass – Conversion class derived from AbstractFile.

• pclass – Python class that represents this object type.

Built-in conversion classes

class scidatacontainer.filebase.AbstractFile(data)
Base class for converting datatypes to their file representation.

abstract decode(data: bytes)
Decode the Container content from bytes. This is an abstract method and it neets to be overwritten by
inheriting class.

abstract encode()→ bytes
Encode the Container content to bytes. This is an abstract method and it needs to be overwritten by inher-
iting class.

Returns
Byte string representation of the object.

Return type
bytes

hash()→ str
Return hex digest of SHA256 hash.

Returns
Hex digest of this object as string.

Return type
str

class scidatacontainer.filebase.BinaryFile(data)
Bases: AbstractFile

Data conversion class for a binary file.

decode(data: bytes)
Store bytes in this class.

encode()→ bytes
Return byte string stored in this class.

Returns
Byte string representation of the object.

3.3. SciDataContainer API 17

SciDataContainer, Release 1.0.0

Return type
bytes

hash()→ str
Return hex digest of SHA256 hash.

Returns
Hex digest of this object as string.

Return type
str

class scidatacontainer.filebase.TextFile(data)
Bases: AbstractFile

Data conversion class for a text file.

charset = 'utf8'

Character encoding used for translation from text to bytes.

Type
charset (str)

decode(data: bytes)
Decode text from given bytes string.

encode()→ bytes
Encode text to bytes string.

Returns
Byte string representation of the object.

Return type
bytes

hash()→ str
Return hex digest of SHA256 hash.

Returns
Hex digest of this object as string.

Return type
str

class scidatacontainer.filebase.JsonFile(data)
Bases: AbstractFile

Data conversion class for a JSON file represented as Python dictionary.

charset = 'utf8'

Character encoding used for translation from text to bytes.

Type
charset (str)

decode(data: bytes)
Decode dictionary from given bytes string.

encode()→ bytes
Convert dictionary to pretty string representation with indentation and return it as bytes string.

18 Chapter 3. Python Library

SciDataContainer, Release 1.0.0

Returns
Byte string representation of the object.

Return type
bytes

hash()→ str
Return hex digest of the SHA256 hash calculated from the sorted compact representation. This should
result in the same hash for semantically equal data dictionaries.

Returns
Hex digest of this object as string.

Return type
str

indent = 4

Indentation of exported JSON files.

Type
indent (int)

sortit(data: Union[dict, list, tuple])→ str
Return compact string representation with keys of all sub-dictionaries sorted.

Parameters
data – Dictionary, list or tuple to convert to string”

Returns
String representation of data

Return type
str

3.3.3 Convenience functions

scidatacontainer.timestamp()→ str
Return the current ISO 8601 compatible timestamp as string.

Returns
timestamp as string

Return type
str

scidatacontainer.config.load_config(config_path: Optional[str] = None)→ dict
Get config data from environment variables and config file.

This functions prefers values in the scidata config file and potentially overwrites values that are present as envi-
ronmental variables.

Usually, users doen’t need to call this function. However, it can be used for debugging purposes if the configu-
ration parameters are not as expected.

Parameters
str – Path of the config file. If this is None, the default file will be used. This filename is only
required for testing.

Returns
A dictionary containing information strings with keys “author”, “email”, “server”, “key”.

3.3. SciDataContainer API 19

SciDataContainer, Release 1.0.0

Return type
dict

20 Chapter 3. Python Library

CHAPTER

FOUR

DATA STORAGE SERVER

The data storage server provides a browser interface as well as a REST API. A user account is required to access the
server and get an API key for the REST API via the browser interface.

4.1 Container Upload

Method
POST

URL
http://<server>/api/datasets/

Content
Container files

Header
Authorization: Token <key>

Response:

HTTP return code Description Returned content
201 Created Successful container upload
400 Bad Request Existing static dataset with same hash and containerType JSON object
400 Bad Request Malformed or invalid container
403 Forbidden Unauthorized access
409 Conflict Existing completed dataset with same UUID
415 Unsupported Invalid container format
500 Server Error Internal server error

4.2 Container Download

Method
GET

URL
http://<server>/api/datasets/<uuid>/download/

Header
Authorization: Token <key>

21

https://en.wikipedia.org/wiki/Representational_state_transfer
http:/
http:/

SciDataContainer, Release 1.0.0

Response:

HTTP return code Description Returned content
200 OK Success Data container
204 No Content Dataset deleted
301 Moved Permanently Dataset replaced Last replacement of container
403 Forbidden Unauthorized access
404 Not Found No dataset available
500 Server Error Internal server error

22 Chapter 4. Data Storage Server

INDEX

A
AbstractContainer (class in scidatacontainer), 15
AbstractFile (class in scidatacontainer.filebase), 17

B
BinaryFile (class in scidatacontainer.filebase), 17

C
charset (scidatacontainer.filebase.JsonFile attribute),

18
charset (scidatacontainer.filebase.TextFile attribute), 18
Container (class in scidatacontainer), 14

D
decode() (scidatacontainer.AbstractContainer method),

15
decode() (scidatacontainer.Container method), 14
decode() (scidatacontainer.filebase.AbstractFile

method), 17
decode() (scidatacontainer.filebase.BinaryFile method),

17
decode() (scidatacontainer.filebase.JsonFile method),

18
decode() (scidatacontainer.filebase.TextFile method),

18

E
encode() (scidatacontainer.AbstractContainer method),

15
encode() (scidatacontainer.Container method), 14
encode() (scidatacontainer.filebase.AbstractFile

method), 17
encode() (scidatacontainer.filebase.BinaryFile method),

17
encode() (scidatacontainer.filebase.JsonFile method),

18
encode() (scidatacontainer.filebase.TextFile method),

18

F
freeze() (scidatacontainer.AbstractContainer method),

15

freeze() (scidatacontainer.Container method), 14

H
hash() (scidatacontainer.AbstractContainer method), 16
hash() (scidatacontainer.Container method), 14
hash() (scidatacontainer.filebase.AbstractFile method),

17
hash() (scidatacontainer.filebase.BinaryFile method),

18
hash() (scidatacontainer.filebase.JsonFile method), 19
hash() (scidatacontainer.filebase.TextFile method), 18

I
indent (scidatacontainer.filebase.JsonFile attribute), 19
items() (scidatacontainer.AbstractContainer method),

16
items() (scidatacontainer.Container method), 14

J
JsonFile (class in scidatacontainer.filebase), 18

K
keys() (scidatacontainer.AbstractContainer method), 16
keys() (scidatacontainer.Container method), 14

L
load_config() (in module scidatacontainer.config), 19

R
register() (in module scidatacontainer), 17
release() (scidatacontainer.AbstractContainer

method), 16
release() (scidatacontainer.Container method), 14

S
sortit() (scidatacontainer.filebase.JsonFile method),

19

T
TextFile (class in scidatacontainer.filebase), 18
timestamp() (in module scidatacontainer), 19

23

SciDataContainer, Release 1.0.0

U
upload() (scidatacontainer.AbstractContainer method),

16
upload() (scidatacontainer.Container method), 14

V
validate_content() (scidatacon-

tainer.AbstractContainer method), 16
validate_content() (scidatacontainer.Container

method), 15
validate_meta() (scidatacontainer.AbstractContainer

method), 16
validate_meta() (scidatacontainer.Container

method), 15
values() (scidatacontainer.AbstractContainer method),

16
values() (scidatacontainer.Container method), 15

W
write() (scidatacontainer.AbstractContainer method),

16
write() (scidatacontainer.Container method), 15

24 Index

	Data Container Concept
	Container Parameters
	Dataset Description
	Timestamp Format
	Suggested Parts
	Container Variants

	Configuration
	Container File Extension
	Configuration File
	Example Configuration File

	Python Library
	Basic Usage
	Container Objects
	Server Storage
	Timestamps
	Incomplete Containers
	Static Containers

	Advanced Usage
	Convenience Methods
	Server Storage
	File Formats

	SciDataContainer API
	Container classes
	File type support
	Built-in conversion classes

	Convenience functions

	Data Storage Server
	Container Upload
	Container Download

	Index

